Minimum Steiner Trees in Normed Planes
نویسندگان
چکیده
A minimum Steiner tree for a given set X of points is a network interconnecting the points of X having minimum possible total length. In this note we investigate various properties of minimum Steiner trees in normed planes, i.e., where the "unit disk" is an arbitrary compact convex centrally symmetric domain D having nonempty interior. We show that if the boundary of D is strictly convex and differentiable, then each edge of a full minimum Steiner tree is in one of three fixed directions. We also investigate the Steiner ratio p(D) for D, and show that, for any D, 0.623 < p(D) < 0.8686.
منابع مشابه
Approximating Minimum Steiner Point Trees in Minkowski
Given a set of points, we define a minimum Steiner point tree to be a tree interconnecting these points and possibly some additional points such that the length of every edge is at most 1 and the number of additional points is minimized. We propose using Steiner minimal trees to approximate minimum Steiner point trees. It is shown that in arbitrary metric spaces this gives a performance differe...
متن کاملApproximating minimum Steiner point trees in Minkowski planes
Given a set of points, we define a minimum Steiner point tree to be a tree interconnecting these points and possibly some additional points such that the length of every edge is at most 1 and the number of additional points is minimized. We propose using Steiner minimal trees to approximate minimum Steiner point trees. It is shown that in arbitrary metric spaces this gives a performance differe...
متن کاملApproximating Steiner Trees and Forests with Minimum Number of Steiner Points
Let R be a finite set of terminals in a metric space (M,d). We consider finding a minimum size set S ⊆ M of additional points such that the unit-disc graph G[R ∪ S] of R ∪ S satisfies some connectivity properties. In the Steiner Tree with Minimum Number of Steiner Points (ST-MSP) problem G[R ∪ S] should be connected. In the more general Steiner Forest with Minimum Number of Steiner Points (SF-M...
متن کاملThe Steiner ratio for the dual normed plane
A minimum Steiner tree for a given set X of points is a network interconnecting the points of X having minimal possible total length. The Steiner ratio for a metric space is the largest lower bound for the ratio of lengths between a minimum Steiner tree and a minimum spanning tree on the same set of points in the metric space. Du et al. (1993) conjectured that the Steiner ratio on a normed plan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete & Computational Geometry
دوره 9 شماره
صفحات -
تاریخ انتشار 1993